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Abstract—Detecting critical changes of environments while
driving is an important task in driver assistance systems. In this
paper, a computational model motivated by human cognitive
processing and selective attention is proposed for this purpose.
The computational model consists of three major components,
referred to as the sensory, perceptual, and conceptual analyzers.
The sensory analyzer extracts temporal and spatial information
from video sequences. The extracted information serves as the
input stimuli to a spatiotemporal attention (STA) neural network
embedded in the perceptual analyzer. If consistent stimuli repeat-
edly innervate the neural network, a focus of attention will be
established in the network. The attention pattern associated with
the focus, together with the location and direction of motion of
the pattern, form what we call a categorical feature. Based on this
feature, the class of the attention pattern and, in turn, the change
in driving environment corresponding to the class are determined
using a configurable adaptive resonance theory (CART) neural
network, which is placed in the conceptual analyzer. Various
changes in driving environment, both in daytime and at night,
have been tested. The experimental results demonstrated the
feasibilities of both the proposed computational model and the
change detection system.

Index Terms—Cognitive model, configurable adaptive reso-
nance theory (CART) neural network, driver assistance system,
sensory, perceptual, and conceptual analyzers, spatiotemporal
attention (STA) neural network, system to detect change in driving
environment.

I. INTRODUCTION

D IVERSE methods for improving driving safety have been
proposed. They can be roughly categorized into passive

or active. Passive means (e.g., seat-belts, airbags, and anti-lock,
braking systems), which have significantly reduced traffic fatal-
ities, were originally introduced to diminish the degree of injury
during an accident. Active means on the other hand are designed
to prevent accidents in the first place. Driver assistance systems
[2], [27], [30], [31], [36] are one kind of active system that are
intended to bring to the attention of a driver to the potential of
a dangerous situation as soon as possible.
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Driving is indeed a sophisticated process in which three main
tasks are involved: navigation, guidance, and stabilization [2].
The performances of these tasks are subject to two major fac-
tors: the temperament of drivers and the technologies of vehi-
cles. In this study, the former factor is of prime concern. There
are two kinds of influences, exterior and interior, that will af-
fect the behavior of a driver. The external influence comes from
the driver’s knowledge about the driving environment, while the
internal influence comes from the driver’s expectations. These
two influences are intrinsically related; the better the informa-
tion a driver receives, the more appropriate his expectations will
be.

Various sensors (e.g., infrared, multispectral, photometric,
range, ladar, and ultrasonic sensors) have been utilized to facil-
itate human acquisition of information from the environment.
In this study, we consider visual sensors (e.g., cameras and
video camcorders). Vision systems have been used in many
applications for detecting, tracking, monitoring, inspecting, and
recognizing objects. For the purpose of driver assistance, vision
systems have been exploited to detect, track, and recognize
objects such as roads [6], [7], [17], [20], [23], lane markings
[4], [6], [13], [16], [22], [33], [38], traffic signs [14], [29], road
conditions (e.g., dry, wet, fog, freezing, and snow) [1], [39],
and obstacles (e.g., pedestrians, vehicles, motorcycles and other
intruders) [4], [5], [13], [28]. In this paper, a vision system for
detecting critical changes in driving environment is presented.

The objective of detecting changes in driving environment
is threefold. First, since a number of subsystems constitute a
driver assistance system, the subsystems should be coordinated
in order to achieve optimal performance of the driver assistance
system. The cooperation of the subsystems, including which,
when and how they are to be conducted, often depends on
conditions of driving environments. Secondly, parameters
embedded in the subsystems should be updated in accordance
with environmental changes, such as the changes in illumi-
nation, weather, road conditions, vehicle speed, etc. Finally,
unexpected changes in driving environment are often related
to critical traffic situations. Early warnings of these situations
to drivers, especially those who drive cargo or tanker trucks,
would be highly desirable.

Few researchers have discussed how to detect environmental
changes while driving. A possible reason may be that “change”
is difficult to define because everything is “moving” while
driving. In this paper, we confine ourselves to changes con-
cerning driving safety which may be encountered in daytime
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or at night while driving on freeways. The changes under
consideration include left-lane-change (moving to the lane on
the left), right-lane-change (moving to the lane on the right),
freeway entry, freeway exit, tunnel entry, tunnel exit, and
overpass ahead.

To detect the above changes in driving environment, a com-
putational framework motivated by human cognitive processing
and selective attention is proposed. In this framework, both tem-
poral and spatial information are extracted from input video se-
quences. The extracted information serves as input stimuli to
a spatiotemporal attention (STA) neural network. If consistent
stimuli keep innervating the neural network, a focus of attention
will be established in the network. The attention pattern associ-
ated with the focus, together with the location and direction of
motion of the pattern, form what we call a categorical feature.
Thereafter, based on this feature the class of the attention pattern
and, in turn, the change in driving environment corresponding
to the class are determined using a configurable adaptive reso-
nance theory (CART) neural network.

We describe the proposed computational model in Section II.
The STA and CART neural modules are addressed in Section III.
A system to detect change in driving environment based on the
computational model is developed in Section IV. The feasibility
of the proposed computational model and the robustness of the
developed change detection system are detailed in Section V.
Finally, concluding remarks and future work are given in Sec-
tion VI.

II. COMPUTATIONAL MODEL

In this section, the psychophysical fundamentals of cognitive
processing are briefly reviewed, followed by a discussion of se-
lective attention. A computational model implementing cogni-
tive processing and selective attention is then presented. This
model will later be utilized to develop a system to detect change
in driving environment.

A. Fundamentals of Cognitive Processing

Pattern recognition tasks generally require considering many
pieces of information simultaneously. Computers, which are ba-
sically sequential machines, are not adequate for such tasks.
However, human brains with their extreme degree of parallelism
seem to deal with these tasks effortlessly. The effectiveness of
parallelism depends on knowledge representation schemes in-
volved in information processing. The distributed representation
scheme has been widely examined, and has revealed a number of
appealing characteristics [18], such as constructivity (recalling
subjects from their incomplete or imperfect contents), general-
ization (generalizing modifications to all related subject mat-
ters), and tunability (automatically adapting to changing cir-
cumstances). The distributed representation scheme, together
with parallel processing, lead to what cognitive scientists call
parallel distributed processing. There are diverse processings
active both within and between layers of neurons, giving rise
to different levels of information processing and analysis, such
as sensory, perceptual, syntactic, semantic, episodic, and action
analyzes. A cognitive process is accomplished by a series of in-
formation analyzers arranged in a hierarchical order.

While information analyzers may play different roles in cog-
nitive processing, they possess analogous constructs [21], [24].
Every analyzer consists of several layers of neurons. Neurons on
the same layer are laterally connected and their links are almost
always inhibitory. Neurons on different layers are vertically con-
nected and their links are typically excitatory. A vertical link
indicates the existence of a particular part-whole relationship;
the synaptic strength of the link specifies the degree of the rela-
tionship. A lateral inhibitory link signifies the existence of com-
peting relationship between two components; the strength of the
link describes the degree of the competitive relationship. Both
links and synaptic strengths are established through learning.

B. Selective Attention

According to Titchener [34], consciousness can be divided
into center and periphery, or focus and margin. Attention is di-
rected to the center and the focus. The question arises as to
how focuses and centers of attention arise in consciousness. Ev-
eryone knows that we cannot attend to too many things at once.
Indeed, it is not easy having more than one unless things or
events are rather familiar. This observation suggests that there
are selecting or filtering mechanisms at work in consciousness
in which centers and focuses of attention are established.

Two types of selectivity of attention have been proposed [25]:
involuntary (automatic) and voluntary (effortful) selectivities.
The former originates from sudden and unexpected events,
while the latter results from forcing attention to uninteresting
things. For developing a target detection system, the latter
paradigm will not be adequate for it forces the system attention
to uninteresting objects rather than those of interest. In the
following, we consider involuntary selectivity. For this, two
principles have been introduced: filtering and amplification.
The former states that unwanted things are gradually attenuated
until they are filtered out from the center of attention, and
the latter states that the selected events are progressively aug-
mented and intensified until they seize the focus of attention.
Both principles are readily realized with neural networks in
which focuses of attention correspond to the subsets of strongly
activated neurons.

A number of models of selective attention are rooted in the
aforementioned two principles, including Broadbent’s early-se-
lection model, Norman’s late-selection model and Treisman’s
attenuation model. Broadbent argued that attentional selection
appears only in the sensory analyzer where only selected in-
formation is passed on for further processing. In his model, in-
formation that comes through the sensory channel is selected
on the basis of sensory attributes (e.g., intensity, color, texture,
frequency, orientation and location). However, Norman argued
that attentional selection can also take place in the semantic
analyzer. In her model, attentional selection is the outcome of
two input sources of stimuli: bottom-up sensory stimuli and
top-down stimuli from a pertinence mechanism. This mecha-
nism and, in turn, the Norman model illustrate both the prime
effect of expectation and the effect of habituation by allowing
some neurons to be activated even though they have lower acti-
vations than others. Unfortunately, the above two models cannot
account for several issues regarding the effects of meaning on
shadowing performance previously designed by Cherry [9] and
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Spiethet al.[31]. In order to compensate for the shortcomings of
the above two models, Treisman proposed an attenuation model
in which signals are attenuated by a series of selective filters
located in the sensory, perceptual, syntactic and semantic ana-
lyzers. In other words, Treisman agreed that attentional selec-
tion occurs in all analyzers. The set of neurons will form the
focus of attention after all the attenuation in the analyzers.

Vision researchers have presented several models concerning
visual attention [3], such as guided search [37], variable pow-
ered lens [19], spotlight [12], feature-based models [15], [26],
and connectionist models [35]. These models are introduced
essentially for active vision systems. Such systems include a
number of distinguishing features, such as controlled eye move-
ment, gaze orientation, foveation, selective visual feedback, as
well as active sensing. In the content of active vision, visual at-
tention has been categorized into two classes, overt and covert
attentions [10]. The former externally directs the sensor toward
the spatial region of interest in a scene, while the latter selects or
filters visual areas from an internal representation of the scene.
While our vision system is mounted in a moving vehicle, the
sensing device of the system is stationary with respect to the ve-
hicle. Therefore, only the covert attention is implemented in our
system.

C. Cognitive Model

Fig. 1 depicts the proposed computational model, which cap-
tures several important aspects of cognitive processing and se-
lective attention as addressed in the previous subsections. The
model is comprised of three components, the sensory, percep-
tual, and conceptual analyzers. The input to the model are video
sequences. Rather than detect and recognize target objects in
each input image, the temporal information of moving objects
is first extracted from the video sequence. However, everything
appears to be moving while driving, so how can the objects of
interest be attended to among a jumble of moving objects? The
spatial information (e.g., shapes, colors, textures, orientation,
and location) of objects then plays an important role in distin-
guishing among objects. In the sensory analyzer, we actually
extract temporal information first and the spatial information.
This is not only because, in practice, extraction of temporal in-
formation is easier than extraction of spatial information, but
also because it is compatible with the fact that motion is gener-
ally analyzed and perceived earlier than form and meaning in the
human cognitive system [25], [40]. The sensory process forms
the early-selection stage of our computational model.

The information acquired in the sensory analyzer serves as
the stimulus to a neural module, called the STA neural module,
in the perceptual analyzer. The neural module implements the
involuntary selectivity of attention under the guidance of the
information provided by a long-term memory (LTM) in which
the spatial information of target objects is preserved. The acti-
vations of the STA neurons are examined regularly during pro-
cessing. If there is no focus of attention present in the network,
the system repeats the above process. Otherwise, feature extrac-
tion is initiated. The categorical feature of the object appearing
in the image area corresponding to the focus of attention is de-
tected.

Fig. 1. Proposed computational model.

The categorical feature, represented as a one-dimensional
(1-D) pattern, called a supraliminal pattern, acts as the input
stimulus to a CART neural network in the conceptual analyzer.
With the input supraliminal pattern, the LTM trace of the CART
neural module is initialized with content (that is, a collection
of subliminal examplars associated with the input supraliminal
pattern) retrived from a system memory, called the episodic
memory. During initialization, the configuration of the CART
neural module is adjusted to fit the loaded content. We refer
to the ability to adjust configuration as the configurability of
the neural module. After the initialization step, the recognition
of the input pattern is accomplished by comparing the input
supraliminal pattern with the subliminal examplars residing in
the LTM trace of the neural module. If a subliminal examplar is
similar enough to the input pattern, its class is taken as that of
the examplar being considered. The CART neural module next
performs supervised learning to incorporate the supraliminal
pattern in the subliminal examplar under consideration. On
the other hand, if no subliminal examplar is similar to the
input pattern, an unsupervised learning memorizes the input
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supraliminal pattern as a new subliminal examplar in the LTM
trace.

Thereafter, the system goes to the action stage in which a
number of things are handled. These include outputting the re-
sult, updating the episodic memory, restoring the CART neural
module, and inhibiting the focus of attention being considered
in the STA neural module. After these, the system repeats the
entire process.

III. N EURAL MODULES

There are two neural modules which play important roles in
our computational model: the STA neural module in the percep-
tual analyzer and the CART neural module in the conceptual an-
alyzer. This section addresses these two modules.

A. STA Neural Network

The STA neural network, as Fig. 2 shows, is configured as
a two-layer network with one input layer and one output layer.
The output layer is also referred to as the attention layer. Neu-
rons in this layer are arranged into a two–dimensional (2-D)
array in which they are interconnected. These within-layer (lat-
eral) connections are almost always inhibitory. There are no
synaptic links among input neurons though they are organized
into a 2-D array, too, as the attention neurons. They are fully
connected to the attention neurons. These connections are called
between-layer (vertical) connections and are always excitatory.

Let the size of both the arrays be the same as that of the input
images. Let denote the weight of the link between attention
neuron and input neuron . The weight vector of attention
neuron is denoted as , where is
the number of input neurons. The input to attention neuron
due to input stimuli is

(1)

The linking weights, , between the input layer and the at-
tention layer are defined as follows. Referring to Fig. 3, let
be any input neuron and be its corresponding neuron on the
attention layer. Assume that a 2-D Gaussianis centered at at-
tention neuron . The weight linking the input neuron
with the attention neuron is defined as , where

is the position vector of attention neuron with respect to
attention neuron .

The lateral interaction among attention neurons is character-
ized by a “Mexican-hat” function, denoted by shown in
Fig. 6, where is a position vector originating from the center of
the function. The function plays an important role in clustering
activations of neurons. It is often approximated by a Lapla-
cian of Gaussian (LOG), , or a difference of Gaussians
(DOG), . The input to attention neuron due to
lateral interaction is defined as

(2)

where is the neighbors of neuron , and is the weight
linking neurons with , which have position vectors and

Fig. 2. STA neural network.

Fig. 3. Weights between input layer and attention layer.

, respectively. Here, we assume that for all and .
is the activation of attention neuron .

Let the activation of attention neuron be governed by

(3)

where and are positive constants;specifies the decay rate
of , and weights the net inputs in which

is a threshold to limit the effects of noise. Functions and
are defined as

if
if

(4)

if
if

(5)

in which . Function has been called an attack
function, and causes different rise and decay times for neural
activations.

Considering the case in which attention neuronreceives a
positive net input, i.e., , from (5), we know

. Substituting this result into (3), we get
. Suppose now that . According to
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Fig. 4. Activation of an attention neuron in response to a stimulus.

(4), . Assuming that the initial activation of
neuron is zero, and that the input lasts from time zero to
time , the solution of the above differential equation is

(6)

However, if , then from (4)
. Substituting this result into (3), we

obtain . Solving this equation for , we
get

(7)

The difference between (6) and (7) is in the lack of constantin
(6). Since , the rate of rise for (7) is smaller than that
for (6). Next, considering the case where the input is removed
at time , the net input to neuron becomes negative, i.e.,

. Following the same analysis as before, we conclude
that

(8)

Refer to Fig. 4, which shows the activation of an attention
neuron in response to an input stimulus. If the net input to the
neuron is greater than thresholdwithin a time interval , the
neuron needs about time to reach maximum activation, and
takes about time to decay. Since , the decay time
is longer than the rise time.

B. CART Neural Network

The CART neural module is an ART2 neural network [8] with
a configurable long-term memory (CLTM). Fig. 5 depicts the
ART2 neural network. There are two subsystems comprising the
network, an attentional subsystem and an orienting subsystem.
The attentional subsystem is composed of two fields, an input
representation field and a category representation field.
The CLTM is embedded in the bidirectional links between
and and is reconfigurable in our neural module.contains
only one layer, denoted by, which serves as a competitive
layer. consists of six layers, denoted by, , , , , and

. The orienting subsystem is composed of two components, a
layer and a signal generator. Layer integrates the activities

from layers and in and sends the result to the signal gen-
erator . It determines whether or not a reset signal is emitted
to layer in .

Let be an input pattern. It propagates back and forth within
the field until all its layers stablize. The activities of the layers
within are

(9)

where and are positive constants, andis a small positive
value. Function here performs a contrast enhancement to
the input pattern and is defined by

if
if

(10)

in which is a positive constant less than one. Functionis the
transfer function of neurons and is given by

otherwise
(11)

where indicates the winner on layer and is a constant
between zero and one. is the net input from layer to the

th neuron, , in which is the weight from
the th neuron to the th neuron.

Once the layers in have stablized, the activity of layer
is transmitted to layer in . The neurons on layer compete
with one another for the signal. If no neuron wins the compe-
tition, some uncommitted neuron on layerwill be selected
for encoding the input pattern as a new prototype through un-
supervised learning. Learning takes place by revising both the
weights of the top-down and bottom-up connections between
the uncommitted neuron and layer. Let denote the uncom-
mitted neuron which is selected. Its bottom–upand top-down

weights are updated according to

(12)

On the other hand, if one of theneurons wins the compe-
tition, the neuron initiates the corresponding prototype encoded
on the top-down connections. The prototype and the input pat-
terns are matched with each other within. Matching proceeds
until all layers in calm down. The activities of layers and

are then forwarded to layerin which the activities of and
are integrated according to

(13)

where is a constant subject to the constraint that
. The condition for triggering a reset signal is determined by

, where is called the vigilance parameter.
If a reset signal is emitted, the currently activated neuron on

is inhibited and the process is repeated; otherwise, the input
pattern is regarded as being in the category represented by the
neuron.
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Fig. 5. Architecture of the ART2 neural network.

Fig. 6. Flowchart of information acquisition.

IV. SYSTEM TO DETECTCHANGE IN DRIVING ENVIRONMENT

A system based on the presented computational model for de-
tecting changes in driving environment is developed in this sec-
tion. The system consists of three components, referred to as the
sensory, perceptual, and conceptual components, corresponding
to the three analyzers of the proposed computational model.

A. Sensory Component

The input data to the system are color video sequences
acquired using a camcorder mounted in the windshield of a
moving vehicle. In the sensory component, temporal and spatial

information of dynamic scenes is extracted from the input video
sequences. The input video sequences are typically unstable
because of movements and vibrations of the vehicle. Image
stabilization techniques [11] are commonly used to attenuate
the effect of nonsmooth motions of vehicles in video sequences.
However, such techniques are generally time expensive and are
not adequate for real-time applications. We thus turn to another
approach to compensating for image instability.

Fig. 6 depicts the flowchart of information acquisition
from a color video sequence. Let denote its th image
frame. First, is subsampled every two pixels in order to
reduce the processing time. Let specify the subsampled
image and be its 2-D domain manifold. Suppose ,

, and are the color components of , i.e.,
. A low-color image,

, is then computed by the following. For
all

Likewise, a high-color image, ,
is computed by

Here, . Suppose that and
are the intensity components of color images and ,
respectively. The intensity value of a pixel ( ) with
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Fig. 7. Example illustrating the steps of the sensory component.

( ) color values is determined simply by
. A spatial difference image

is then computed by for all
. The difference image will highlight objects which

are relatively stationary with respect to the viewer.
See the example shown in Fig. 7. The first column of the

figure displays a portion of the input video sequence. In this
example, the observing car was driven in the left-most lane and
a bus was traveling in the next lane to the right. The second and
third columns of the figure display the high-color and low-color
image sequences, respectively. A high-color (low-color

) image at time preserves the maximum (minimum) color
values of the input video sequence up to time. In the fourth
column of the figure, the difference images computed from the
high-color and low-color images are displayed. In this sequence,
the objects having relatively small movements with respect to
the viewer are highlighted.

Having computed spatial difference images , we cal-
culate temporal difference (derivative) images from

for all .
Turning to the previous example of Fig. 7, the sequence of
derivative images are depicted in the last column of the figure.
In this sequence, the white regions in the first few images
graduately diminish with time. This is because the highlighted
areas in the difference images will cancel each other out during
subtractions of successive difference images. The weakened
white regions in the derivative images which originate from
image instability will not be able to activate the neural networks
in the subsequent system components. We use this method to
effectively get rid of the influence of image instability.

Recall that the highlighted regions in the difference images
correspond to objects which are relatively stationary with re-

spect to the viewer. Such objects can only produce small en-
tries in the derivative images. See Fig. 8 for another example of
right-lane-change, in which the input video sequence is shown
in the top row and the resultant derivative images are shown
in the middle row. In this example, the observing car is moving
from the left to the right lane so that lane markings keep moving
from right to left in the input video sequence. This creates dis-
tinct white regions in the derivative images. Note here that the
sequence of derivative images preserves both spatial informa-
tion (e.g., shape and location) of objects and their temporal in-
formation (e.g., direction of motion and speed).

Our sensory component actually simulates the vision systems
of some lower animals, e.g., frogs and snakes. In their visual
systems, stationary objects are invisible, while both shapes and
motions of moving objects are easily perceived.

B. Perceptual Component

The derivative images resulting from the sensory component
serve as input stimuli to the STA neural module in the perceptual
component. If the input derivative images contain only small
values (see the example in Fig. 7) or include large values which
are randomly distributed across the sequence of images, signifi-
cant attention patterns (patterns of neural activations over the at-
tention layer) will not be activated. In practice, we examine each
derivative image before feeding it to the STA neural module.
Those derivative images containing small values are ignored so
as to save processing time.

A focus of attention can be established only if an attention
pattern becomes strong enough. Refer to the previous example
of right-lane-change illustrated in Fig. 8. The attention maps
(i.e., snapshots of neural activations over the attention layer) are
displayed in the bottom row. At the beginning, a very weak pat-
tern near the lower right corner of the attention map is created
when the vehicle starts changing lane. The pattern gets larger
and stronger as the process of lane change continues. Finally,
the pattern reaches its maximum at which time the vehicle com-
pletes its lane change. Subsequently, if the vehicle stays in the
current lane, the pattern slowly decays.

Different changes in driving environment will generate dif-
ferent attention patterns. Fig. 9 depicts the prototypical attention
patterns under consideration, each corresponding to a specific
change in driving environment. It is common, however, that pat-
terns extracted from attention maps may not normally be so per-
fect. We have to depend on other features for achieving reliable
performance. Hence, two additional features are introduced, lo-
cations and directions of motion of attention patterns. As can be
seen in Fig. 9, patterns may appear at different locations in an
attention map. Since precise locations of patterns are difficult
to determine, we qualitatively define five types of locations (la-
beled 0, 1, 2, 3, 4) in Fig. 10(a). In a similar vein, five types
of motion directions (labeled 0–4) are defined in Fig. 10(b).
The pattern, its location and direction of motion form a feature
vector, referred to as a categorical feature, to be used in the con-
ceptual component.

C. Conceptual Component

The categorical features received from the perceptual compo-
nent consist of both the qualitative (location and direction of mo-
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Fig. 8. Example of right-lane-change.

Fig. 9. Prototypical attention patterns for the driving environmental changes under consideration.

Fig. 10. Qualitative types of location and direction of motion.

tion) and quantitative (attention pattern) information of moving
objects. We use the qualitative information of location and di-
rection of motion to quickly weed out inappropriate prototyp-
ical patterns (Fig. 9) from further processing. The surviving pro-
totypical patterns are then retrieved from the episodic memory
of the system and are installed in the LTM trace of the CART
neural module. In this neural module, the input attention pattern
is matched with the prototypical patterns. If the input pattern is
recognized as one of the prototypical patterns, the class of the
prototypical pattern is temporarily preserved. Only when three
successive results turn out to be the same is the final outcome
confirmed and reported through a visual interface (see Fig. 11)
as well as an audio speaker (not shown), which are both attached
to the same computer. In this case, the selected prototypical pat-
tern is updated by means of supervised learning. However, if
the input pattern cannot find a match from among the prototyp-
ical patterns, the input pattern is retained through unsupervised

learning. The retained pattern will later be discarded or be re-
garded as a new prototypical pattern by an off-line method. In
the latter case, the class of the new prototypical pattern is as-
signed by hand.

V. EXPERIMENTS

The input data to our system was acquired using a video
recorder mounted in the windshield of a vehicle and while
driving on freeways. Each video sequence was downsampled to
a frame rate of 5 Hz to reduce the processing load on the com-
puter. This frame rate is also fast enough for a driver to respond
to any of the environmental changes considered in this paper.
Furthermore, the size of each input image (320240 pixels)
was reduced to 160 120 pixels by uniformly subsampling so
as to further reduce the processing time.

A number of video sequences have been collected for our ex-
periments. The sequences are categorized into seven classes, re-
ferred to as the right-lane-change, left-lane-change, tunnel entry,
tunnel exit, freeway entry, freeway exit, and overpass ahead.
Each class is further divided into two groups, termed the “day”
and “night” groups. Since the cases of lane change have already
been discussed in the previous sections, in this section we dis-
cuss the other cases of environmental change.

A. Experimental Results

Fig. 12 presents the experimental results for tunnel entry,
tunnel exit and overpass ahead, and Fig. 13 gives the results for
freeway entry, freeway exit, and right-lane-change at night. In
each example, only a portion of the input video sequence and
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Fig. 11. Visual interface for reporting the results of change detection in driving environment.

Fig. 12. Experimental results for tunnel entry, tunnel exit, and overpass ahead.

the associated attention maps are shown. In all cases, recogni-
tion results are reported through a visual interface (see Fig. 11)
and an audio speaker.

Refer to the example of tunnel entry shown in Fig. 12(a). In
the input video sequence, the figure of the tunnel entry has a
relatively dark interior surrounded by a ring-like white border.
Such a figure has caused a rainbow-like pattern on the attention
map. The pattern became larger and brighter as the vehicle ap-
proached the tunnel. Once the pattern becomes well developed,
its current location and historical direction of motion form a cat-
egorical feature. Based on this feature, a tentative decision on
the type of environmental change is made by the system. Only
when three successive decisions are all the same, the final deci-
sion (i.e., the type of environmental change) is reported.

Fig. 12(b) shows an example of tunnel exit, which has a pic-
ture nearly opposite to the tunnel entry, that is, a bright interior
surrounded by a large portion of dark area. Such a figure cre-
ates a sunrise-like pattern on the attention map. Our system suc-
cessfully discriminated between tunnel entries and exits based

on their attention patterns. This is applicable for both the day
and night groups. However, the figures and attention patterns of
tunnel entries in daytime are similar to those of tunnel exits at
night, and vice versa. Therefore, we need strategies to distin-
guish between the cases of day and night. A heuristic is intro-
duced which states that a tunnel exit should come after a tunnel
entry. A more reliable method may be to incorporate an illumi-
nation assessment technique in the system.

Next, see the example of overpass ahead shown in Fig. 12(c).
This class of environmental change can easily be identified
based on its particular locations of attention patterns. Referring
to Fig. 9, the prototypical attention patterns can actually be
divided into four groups based on the locations of the pat-
terns. For an input pattern, our system quickly narrows down
to a small set of candidate prototypical patterns for testing
according to the location of the input pattern. The direction of
motion attribute is utilized whenever the candidate set contains
more than one pattern. In general, less than three patterns are
retained in the candidate set for examination. The categorical
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Fig. 13. Experimental results for freeway entry, freeway exit, and right-lane-change at night.

Fig. 14. Lane change on a curved road.

features of overpasses extracted in daytime and at night are
almost the same. However, overpasses will only be detected at
night when the side of an overpass is illuminated by outdoor
lighting because the light from vehicles’ headlights do not
reach overpasses.

Turn to Fig. 13(a) and (b) for examples of freeway entry and
exit. This pair of environmental changes are easily separated
from the others based on the attribute of location. However, un-
like right and left lane changes, freeway entry and exit cannot
be distinguished based on their directions of motion. A pattern
test is required to distinguish between them. Referring again to
Fig. 9, the attention patterns for freeway entry and exit are dif-
ferent in both size and distribution of neural activation. The pat-
tern for entry has a larger size than that for exit. Furthermore,
the ridge of distribution of activation appears around the lower
border for the entry pattern while it appears around the medial
axis for the exit pattern. The CART neural module has discrimi-
nated these two types of patterns reliably. The attention patterns
for entry and exit generated at night are similar to those pro-
duced in daytime.

See the example of right-lane-change at night shown in
Fig. 13(c). Compare the attention patterns of this example
with those depicted in the bottom row of Fig. 8 which were
generated by a right-lane-change in daytime. Ignoring noisy
patterns, these two groups of patterns are visually comparable

to each other. Experimental results also showed the consistency
between the two groups of attention patterns in their attributes
of location and direction of motion. Indeed, we have observed
that a better performance was achieved during night than during
day because many background objects are invisible at night.

B. Discussion

Here we discuss curved roads, varying illumination condi-
tions, shadows, passing cars, rain, snow, faded lane markings,
and multiple environmental changes. Referring to Fig. 14, our
system did detect a right-lane-change (see the patterns at the
bottoms of the attention maps) on a curved road. Recall that the
frame rate of each input video sequence has been reduced to
5 Hz, so the time interval between successive input images is
0.2 s. During such a period, a vehicle moving at 60 mi/h will
travel a distance of about 0.0033 mi. Even on a sharply curved
road, lane markings, including those near the vehicle, could shift
only a few pixels between successive images. Such a shift is, in
practice, comparable to those resulting from image instability.

Our system seemed to manage different illumination condi-
tions (e.g., sunny, cloudy, foggy, and dusty days) well. Recall
that spatial difference images are computed from the input video
sequence at an early stage of processing. These images encode
contrasts of brightness in scenes. Different illumination condi-
tions actually lead to different degrees of contrast for spatial
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Fig. 15. Shadow cast by an overpass.

difference images. The degrees are also preserved in the deriva-
tive images which are obtained from the temporal difference be-
tween successive spatial difference images. The STA neurons
receiving derivative images as stimuli will be activated if con-
sistent stimuli (i.e., spatiotemporal contrasts of brightness) re-
peatedly innervate the neurons. Accordingly, low contrast will
take longer than high contrast to activate the STA neurons.

Shadows do not degrade the performance of the system in
detecting environmental changes. Considering an example of
lane change, the amount of contrast between lane markings and
pavements within the shadow is different from that outside the
shadow. As already mentioned, different contrast affects only
the detection time, not the result. However, shadows themselves
can actually affect the attention of the system. See the example
shown in Fig. 15. A shadow cast by an overpass is present in
the video sequence. Since there is a relative motion between
the shadow and the moving car, the shadow produces a series
of activation patterns over the attention maps (see the bottom
row of Fig. 15). Compare this series of patterns with that of
Fig. 12(c) which was generated by an overpass. The patterns in
these two groups look similar but our system distinguished be-
tween them based on locations of patterns. We ignore shadows
because they do not influence driving safety. Likewise, cars
in front of the observing car with speeds different from the
observing vehicle’s will attract the system’s attention too. We
leave shadows, passing cars, and several others (e.g., trees, road
signs, construction cones, traffic signals, etc.) to the study of ob-
stacle detection.

When raining or snowing, the regular movement of the wind-
shield wiper can attract the attention of the system. It may not be
a good solution to simply move the camera in front of the wiper
because water or snow will accumulate on the camera lens.
However, if water or snow cause only blurring of the image,
our system may be able to overcome this because only regular
stimuli can activate the STA neurons. On the other hand, since
the movements of wipers are extremely regular, we may get rid
of their effects based on the unique prototypical pattern gen-
erated by wipers. Similarly, if worn lane markings still produce
steady stimuli for the STA neural module, our system will not be
hampered by them. Finally, if multiple environmental changes
occur simultaneously, the activated attention patterns will get
mixed up. Our current system cannot handle such situations.

VI. CONCLUSION AND FUTURE WORK

A computational model motivated by cognitive processing
and selective attention was proposed. The current model con-
sists of three analyzers, each dedicated to a specific task. Addi-

tional analyzers may be introduced to increase the ability of the
model to manage sophisticated tasks. Furthermore, individual
analyzers can also be reinforced in both function, to increase
the robustness of the model, and configuration, to enhance effi-
ciency of processing.

Based on the proposed computational model, a system for
detecting changes in driving environment was developed. The
system is composed of three components, referred to as the sen-
sory, perceptual, and conceptual components, corresponding to
the three analyzers of the cognitive model. The first component
simulates visual systems of lower animals. The second realizes
an involuntary selectivity of attention. The third implements a
model-based recognition process.

The current system can handle seven types of change in
driving environment both in daytime and at night, using the
attributes of attention pattern and its location and direction
of motion, which together constitute a categorical feature. In
principle, the system is readily extended to manage additional
kinds of environmental changes by introducing the associated
categorical features into the system. In the mean time, the
set of attributes comprising a categorical feature should also
be reconsidered. A right set of attributes increases the ability
of the system to discriminate among a large set of possible
environmental changes. However, a large set of recognizable
environmental changes increases the chance of a simultaneous
occurrence of multiple changes. Our system is not yet at the
stage of development where it can deal with that. This and
several mentioned above as well as in the last section will form
the topics for further research. In addition, several subsystems
(e.g., road sign, obstacle, traffic condition detection systems,
etc.) of driver assistance systems should be build on expanded
computational models.
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